But you can represent every possible rational number if you don't try to represent it directly as a decimal. I suppose that's more of a smartarse answer but it's still true!
Here's the first 1024 rational numbers:
{{1, {1, 1}}, {2, {1, 2}}, {3, {2, 1}}, {4, {1, 3}}, {5, {2,
2}}, {6, {3, 1}},
{7, {1, 4}}, {8, {2, 3}}, {9, {3, 2}}, {10, {4, 1}}, {11, {1,
5}}, {12, {2, 4}},
{13, {3, 3}}, {14, {4, 2}}, {15, {5, 1}}, {16, {1, 6}}, {17, {2,
5}}, {18, {3, 4}},
{19, {4, 3}}, {20, {5, 2}}, {21, {6, 1}}, {22, {1, 7}}, {23, {2,
6}}, {24, {3, 5}},
{25, {4, 4}}, {26, {5, 3}}, {27, {6, 2}}, {28, {7, 1}}, {29, {1,
8}}, {30, {2, 7}},
{31, {3, 6}}, {32, {4, 5}}, {33, {5, 4}}, {34, {6, 3}}, {35, {7,
2}}, {36, {8, 1}},
{37, {1, 9}}, {38, {2, 8}}, {39, {3, 7}}, {40, {4, 6}}, {41, {5,
5}}, {42, {6, 4}},
{43, {7, 3}}, {44, {8, 2}}, {45, {9, 1}}, {46, {1, 10}}, {47, {2,
9}}, {48, {3, 8}},
{49, {4, 7}}, {50, {5, 6}}, {51, {6, 5}}, {52, {7, 4}}, {53, {8,
3}}, {54, {9, 2}},
{55, {10, 1}}, {56, {1, 11}}, {57, {2, 10}}, {58, {3,
9}}, {59, {4, 8}},
{60, {5, 7}}, {61, {6, 6}}, {62, {7, 5}}, {63, {8, 4}}, {64, {9,
3}}, {65, {10, 2}},
{66, {11, 1}}, {67, {1, 12}}, {68, {2, 11}}, {69, {3,
10}}, {70, {4, 9}},
{71, {5, 8}}, {72, {6, 7}}, {73, {7, 6}}, {74, {8, 5}}, {75, {9,
4}}, {76, {10, 3}},
{77, {11, 2}}, {78, {12, 1}}, {79, {1, 13}}, {80, {2,
12}}, {81, {3, 11}},
{82, {4, 10}}, {83, {5, 9}}, {84, {6, 8}}, {85, {7, 7}}, {86, {8,
6}}, {87, {9, 5}},
{88, {10, 4}}, {89, {11, 3}}, {90, {12, 2}}, {91, {13,
1}}, {92, {1, 14}},
{93, {2, 13}}, {94, {3, 12}}, {95, {4, 11}}, {96, {5,
10}}, {97, {6, 9}},
{98, {7, 8}}, {99, {8, 7}}, {100, {9, 6}}, {101, {10,
5}}, {102, {11, 4}},
{103, {12, 3}}, {104, {13, 2}}, {105, {14, 1}}, {106, {1,
15}}, {107, {2, 14}},
{108, {3, 13}}, {109, {4, 12}}, {110, {5, 11}}, {111, {6,
10}}, {112, {7, 9}},
{113, {8, 8}}, {114, {9, 7}}, {115, {10, 6}}, {116, {11,
5}}, {117, {12, 4}},
{118, {13, 3}}, {119, {14, 2}}, {120, {15, 1}}, {121, {1,
16}}, {122, {2, 15}},
{123, {3, 14}}, {124, {4, 13}}, {125, {5, 12}}, {126, {6,
11}}, {127, {7, 10}},
{128, {8, 9}}, {129, {9, 8}}, {130, {10, 7}}, {131, {11,
6}}, {132, {12, 5}},
{133, {13, 4}}, {134, {14, 3}}, {135, {15, 2}}, {136, {16,
1}}, {137, {1, 17}},
{138, {2, 16}}, {139, {3, 15}}, {140, {4, 14}}, {141, {5,
13}}, {142, {6, 12}},
{143, {7, 11}}, {144, {8, 10}}, {145, {9, 9}}, {146, {10,
8}}, {147, {11, 7}},
{148, {12, 6}}, {149, {13, 5}}, {150, {14, 4}}, {151, {15,
3}}, {152, {16, 2}},
{153, {17, 1}}, {154, {1, 18}}, {155, {2, 17}}, {156, {3,
16}}, {157, {4, 15}},
{158, {5, 14}}, {159, {6, 13}}, {160, {7, 12}}, {161, {8,
11}}, {162, {9, 10}},
{163, {10, 9}}, {164, {11, 8}}, {165, {12, 7}}, {166, {13,
6}}, {167, {14, 5}},
{168, {15, 4}}, {169, {16, 3}}, {170, {17, 2}}, {171, {18,
1}}, {172, {1, 19}},
{173, {2, 18}}, {174, {3, 17}}, {175, {4, 16}}, {176, {5,
15}}, {177, {6, 14}},
{178, {7, 13}}, {179, {8, 12}}, {180, {9, 11}}, {181, {10,
10}}, {182, {11, 9}},
{183, {12, 8}}, {184, {13, 7}}, {185, {14, 6}}, {186, {15,
5}}, {187, {16, 4}},
{188, {17, 3}}, {189, {18, 2}}, {190, {19, 1}}, {191, {1,
20}}, {192, {2, 19}},
{193, {3, 18}}, {194, {4, 17}}, {195, {5, 16}}, {196, {6,
15}}, {197, {7, 14}},
{198, {8, 13}}, {199, {9, 12}}, {200, {10, 11}}, {201, {11,
10}}, {202, {12, 9}},
{203, {13, 8}}, {204, {14, 7}}, {205, {15, 6}}, {206, {16,
5}}, {207, {17, 4}},
{208, {18, 3}}, {209, {19, 2}}, {210, {20, 1}}, {211, {1,
21}}, {212, {2, 20}},
{213, {3, 19}}, {214, {4, 18}}, {215, {5, 17}}, {216, {6,
16}}, {217, {7, 15}},
{218, {8, 14}}, {219, {9, 13}}, {220, {10, 12}}, {221, {11,
11}}, {222, {12, 10}},
{223, {13, 9}}, {224, {14, 8}}, {225, {15, 7}}, {226, {16,
6}}, {227, {17, 5}},
{228, {18, 4}}, {229, {19, 3}}, {230, {20, 2}}, {231, {21,
1}}, {232, {1, 22}},
{233, {2, 21}}, {234, {3, 20}}, {235, {4, 19}}, {236, {5,
18}}, {237, {6, 17}},
{238, {7, 16}}, {239, {8, 15}}, {240, {9, 14}}, {241, {10,
13}}, {242, {11, 12}},
{243, {12, 11}}, {244, {13, 10}}, {245, {14, 9}}, {246, {15,
8}}, {247, {16, 7}},
{248, {17, 6}}, {249, {18, 5}}, {250, {19, 4}}, {251, {20,
3}}, {252, {21, 2}},
{253, {22, 1}}, {254, {1, 23}}, {255, {2, 22}}, {256, {3,
21}}, {257, {4, 20}},
{258, {5, 19}}, {259, {6, 18}}, {260, {7, 17}}, {261, {8,
16}}, {262, {9, 15}},
{263, {10, 14}}, {264, {11, 13}}, {265, {12, 12}}, {266, {13,
11}}, {267, {14, 10}},
{268, {15, 9}}, {269, {16, 8}}, {270, {17, 7}}, {271, {18,
6}}, {272, {19, 5}},
{273, {20, 4}}, {274, {21, 3}}, {275, {22, 2}}, {276, {23,
1}}, {277, {1, 24}},
{278, {2, 23}}, {279, {3, 22}}, {280, {4, 21}}, {281, {5,
20}}, {282, {6, 19}},
{283, {7, 18}}, {284, {8, 17}}, {285, {9, 16}}, {286, {10,
15}}, {287, {11, 14}},
{288, {12, 13}}, {289, {13, 12}}, {290, {14, 11}}, {291, {15,
10}}, {292, {16, 9}},
{293, {17, 8}}, {294, {18, 7}}, {295, {19, 6}}, {296, {20,
5}}, {297, {21, 4}},
{298, {22, 3}}, {299, {23, 2}}, {300, {24, 1}}, {301, {1,
25}}, {302, {2, 24}},
{303, {3, 23}}, {304, {4, 22}}, {305, {5, 21}}, {306, {6,
20}}, {307, {7, 19}},
{308, {8, 18}}, {309, {9, 17}}, {310, {10, 16}}, {311, {11,
15}}, {312, {12, 14}},
{313, {13, 13}}, {314, {14, 12}}, {315, {15, 11}}, {316, {16,
10}}, {317, {17, 9}},
{318, {18, 8}}, {319, {19, 7}}, {320, {20, 6}}, {321, {21,
5}}, {322, {22, 4}},
{323, {23, 3}}, {324, {24, 2}}, {325, {25, 1}}, {326, {1,
26}}, {327, {2, 25}},
{328, {3, 24}}, {329, {4, 23}}, {330, {5, 22}}, {331, {6,
21}}, {332, {7, 20}},
{333, {8, 19}}, {334, {9, 18}}, {335, {10, 17}}, {336, {11,
16}}, {337, {12, 15}},
{338, {13, 14}}, {339, {14, 13}}, {340, {15, 12}}, {341, {16,
11}}, {342, {17, 10}},
{343, {18, 9}}, {344, {19, 8}}, {345, {20, 7}}, {346, {21,
6}}, {347, {22, 5}},
{348, {23, 4}}, {349, {24, 3}}, {350, {25, 2}}, {351, {26,
1}}, {352, {1, 27}},
{353, {2, 26}}, {354, {3, 25}}, {355, {4, 24}}, {356, {5,
23}}, {357, {6, 22}},
{358, {7, 21}}, {359, {8, 20}}, {360, {9, 19}}, {361, {10,
18}}, {362, {11, 17}},
{363, {12, 16}}, {364, {13, 15}}, {365, {14, 14}}, {366, {15,
13}}, {367, {16, 12}},
{368, {17, 11}}, {369, {18, 10}}, {370, {19, 9}}, {371, {20,
8}}, {372, {21, 7}},
{373, {22, 6}}, {374, {23, 5}}, {375, {24, 4}}, {376, {25,
3}}, {377, {26, 2}},
{378, {27, 1}}, {379, {1, 28}}, {380, {2, 27}}, {381, {3,
26}}, {382, {4, 25}},
{383, {5, 24}}, {384, {6, 23}}, {385, {7, 22}}, {386, {8,
21}}, {387, {9, 20}},
{388, {10, 19}}, {389, {11, 18}}, {390, {12, 17}}, {391, {13,
16}}, {392, {14, 15}},
{393, {15, 14}}, {394, {16, 13}}, {395, {17, 12}}, {396, {18,
11}}, {397, {19, 10}},
{398, {20, 9}}, {399, {21, 8}}, {400, {22, 7}}, {401, {23,
6}}, {402, {24, 5}},
{403, {25, 4}}, {404, {26, 3}}, {405, {27, 2}}, {406, {28,
1}}, {407, {1, 29}},
{408, {2, 28}}, {409, {3, 27}}, {410, {4, 26}}, {411, {5,
25}}, {412, {6, 24}},
{413, {7, 23}}, {414, {8, 22}}, {415, {9, 21}}, {416, {10,
20}}, {417, {11, 19}},
{418, {12, 18}}, {419, {13, 17}}, {420, {14, 16}}, {421, {15,
15}}, {422, {16, 14}},
{423, {17, 13}}, {424, {18, 12}}, {425, {19, 11}}, {426, {20,
10}}, {427, {21, 9}},
{428, {22, 8}}, {429, {23, 7}}, {430, {24, 6}}, {431, {25,
5}}, {432, {26, 4}},
{433, {27, 3}}, {434, {28, 2}}, {435, {29, 1}}, {436, {1,
30}}, {437, {2, 29}},
{438, {3, 28}}, {439, {4, 27}}, {440, {5, 26}}, {441, {6,
25}}, {442, {7, 24}},
{443, {8, 23}}, {444, {9, 22}}, {445, {10, 21}}, {446, {11,
20}}, {447, {12, 19}},
{448, {13, 18}}, {449, {14, 17}}, {450, {15, 16}}, {451, {16,
15}}, {452, {17, 14}},
{453, {18, 13}}, {454, {19, 12}}, {455, {20, 11}}, {456, {21,
10}}, {457, {22, 9}},
{458, {23, 8}}, {459, {24, 7}}, {460, {25, 6}}, {461, {26,
5}}, {462, {27, 4}},
{463, {28, 3}}, {464, {29, 2}}, {465, {30, 1}}, {466, {1,
31}}, {467, {2, 30}},
{468, {3, 29}}, {469, {4, 28}}, {470, {5, 27}}, {471, {6,
26}}, {472, {7, 25}},
{473, {8, 24}}, {474, {9, 23}}, {475, {10, 22}}, {476, {11,
21}}, {477, {12, 20}},
{478, {13, 19}}, {479, {14, 18}}, {480, {15, 17}}, {481, {16,
16}}, {482, {17, 15}},
{483, {18, 14}}, {484, {19, 13}}, {485, {20, 12}}, {486, {21,
11}}, {487, {22, 10}},
{488, {23, 9}}, {489, {24, 8}}, {490, {25, 7}}, {491, {26,
6}}, {492, {27, 5}},
{493, {28, 4}}, {494, {29, 3}}, {495, {30, 2}}, {496, {31,
1}}, {497, {1, 32}},
{498, {2, 31}}, {499, {3, 30}}, {500, {4, 29}}, {501, {5,
28}}, {502, {6, 27}},
{503, {7, 26}}, {504, {8, 25}}, {505, {9, 24}}, {506, {10,
23}}, {507, {11, 22}},
{508, {12, 21}}, {509, {13, 20}}, {510, {14, 19}}, {511, {15,
18}}, {512, {16, 17}},
{513, {17, 16}}, {514, {18, 15}}, {515, {19, 14}}, {516, {20,
13}}, {517, {21, 12}},
{518, {22, 11}}, {519, {23, 10}}, {520, {24, 9}}, {521, {25,
8}}, {522, {26, 7}},
{523, {27, 6}}, {524, {28, 5}}, {525, {29, 4}}, {526, {30,
3}}, {527, {31, 2}},
{528, {32, 1}}, {529, {1, 33}}, {530, {2, 32}}, {531, {3,
31}}, {532, {4, 30}},
{533, {5, 29}}, {534, {6, 28}}, {535, {7, 27}}, {536, {8,
26}}, {537, {9, 25}},
{538, {10, 24}}, {539, {11, 23}}, {540, {12, 22}}, {541, {13,
21}}, {542, {14, 20}},
{543, {15, 19}}, {544, {16, 18}}, {545, {17, 17}}, {546, {18,
16}}, {547, {19, 15}},
{548, {20, 14}}, {549, {21, 13}}, {550, {22, 12}}, {551, {23,
11}}, {552, {24, 10}},
{553, {25, 9}}, {554, {26, 8}}, {555, {27, 7}}, {556, {28,
6}}, {557, {29, 5}},
{558, {30, 4}}, {559, {31, 3}}, {560, {32, 2}}, {561, {33,
1}}, {562, {1, 34}},
{563, {2, 33}}, {564, {3, 32}}, {565, {4, 31}}, {566, {5,
30}}, {567, {6, 29}},
{568, {7, 28}}, {569, {8, 27}}, {570, {9, 26}}, {571, {10,
25}}, {572, {11, 24}},
{573, {12, 23}}, {574, {13, 22}}, {575, {14, 21}}, {576, {15,
20}}, {577, {16, 19}},
{578, {17, 18}}, {579, {18, 17}}, {580, {19, 16}}, {581, {20,
15}}, {582, {21, 14}},
{583, {22, 13}}, {584, {23, 12}}, {585, {24, 11}}, {586, {25,
10}}, {587, {26, 9}},
{588, {27, 8}}, {589, {28, 7}}, {590, {29, 6}}, {591, {30,
5}}, {592, {31, 4}},
{593, {32, 3}}, {594, {33, 2}}, {595, {34, 1}}, {596, {1,
35}}, {597, {2, 34}},
{598, {3, 33}}, {599, {4, 32}}, {600, {5, 31}}, {601, {6,
30}}, {602, {7, 29}},
{603, {8, 28}}, {604, {9, 27}}, {605, {10, 26}}, {606, {11,
25}}, {607, {12, 24}},
{608, {13, 23}}, {609, {14, 22}}, {610, {15, 21}}, {611, {16,
20}}, {612, {17, 19}},
{613, {18, 18}}, {614, {19, 17}}, {615, {20, 16}}, {616, {21,
15}}, {617, {22, 14}},
{618, {23, 13}}, {619, {24, 12}}, {620, {25, 11}}, {621, {26,
10}}, {622, {27, 9}},
{623, {28, 8}}, {624, {29, 7}}, {625, {30, 6}}, {626, {31,
5}}, {627, {32, 4}},
{628, {33, 3}}, {629, {34, 2}}, {630, {35, 1}}, {631, {1,
36}}, {632, {2, 35}},
{633, {3, 34}}, {634, {4, 33}}, {635, {5, 32}}, {636, {6,
31}}, {637, {7, 30}},
{638, {8, 29}}, {639, {9, 28}}, {640, {10, 27}}, {641, {11,
26}}, {642, {12, 25}},
{643, {13, 24}}, {644, {14, 23}}, {645, {15, 22}}, {646, {16,
21}}, {647, {17, 20}},
{648, {18, 19}}, {649, {19, 18}}, {650, {20, 17}}, {651, {21,
16}}, {652, {22, 15}},
{653, {23, 14}}, {654, {24, 13}}, {655, {25, 12}}, {656, {26,
11}}, {657, {27, 10}},
{658, {28, 9}}, {659, {29, 8}}, {660, {30, 7}}, {661, {31,
6}}, {662, {32, 5}},
{663, {33, 4}}, {664, {34, 3}}, {665, {35, 2}}, {666, {36,
1}}, {667, {1, 37}},
{668, {2, 36}}, {669, {3, 35}}, {670, {4, 34}}, {671, {5,
33}}, {672, {6, 32}},
{673, {7, 31}}, {674, {8, 30}}, {675, {9, 29}}, {676, {10,
28}}, {677, {11, 27}},
{678, {12, 26}}, {679, {13, 25}}, {680, {14, 24}}, {681, {15,
23}}, {682, {16, 22}},
{683, {17, 21}}, {684, {18, 20}}, {685, {19, 19}}, {686, {20,
18}}, {687, {21, 17}},
{688, {22, 16}}, {689, {23, 15}}, {690, {24, 14}}, {691, {25,
13}}, {692, {26, 12}},
{693, {27, 11}}, {694, {28, 10}}, {695, {29, 9}}, {696, {30,
8}}, {697, {31, 7}},
{698, {32, 6}}, {699, {33, 5}}, {700, {34, 4}}, {701, {35,
3}}, {702, {36, 2}},
{703, {37, 1}}, {704, {1, 38}}, {705, {2, 37}}, {706, {3,
36}}, {707, {4, 35}},
{708, {5, 34}}, {709, {6, 33}}, {710, {7, 32}}, {711, {8,
31}}, {712, {9, 30}},
{713, {10, 29}}, {714, {11, 28}}, {715, {12, 27}}, {716, {13,
26}}, {717, {14, 25}},
{718, {15, 24}}, {719, {16, 23}}, {720, {17, 22}}, {721, {18,
21}}, {722, {19, 20}},
{723, {20, 19}}, {724, {21, 18}}, {725, {22, 17}}, {726, {23,
16}}, {727, {24, 15}},
{728, {25, 14}}, {729, {26, 13}}, {730, {27, 12}}, {731, {28,
11}}, {732, {29, 10}},
{733, {30, 9}}, {734, {31, 8}}, {735, {32, 7}}, {736, {33,
6}}, {737, {34, 5}},
{738, {35, 4}}, {739, {36, 3}}, {740, {37, 2}}, {741, {38,
1}}, {742, {1, 39}},
{743, {2, 38}}, {744, {3, 37}}, {745, {4, 36}}, {746, {5,
35}}, {747, {6, 34}},
{748, {7, 33}}, {749, {8, 32}}, {750, {9, 31}}, {751, {10,
30}}, {752, {11, 29}},
{753, {12, 28}}, {754, {13, 27}}, {755, {14, 26}}, {756, {15,
25}}, {757, {16, 24}},
{758, {17, 23}}, {759, {18, 22}}, {760, {19, 21}}, {761, {20,
20}}, {762, {21, 19}},
{763, {22, 18}}, {764, {23, 17}}, {765, {24, 16}}, {766, {25,
15}}, {767, {26, 14}},
{768, {27, 13}}, {769, {28, 12}}, {770, {29, 11}}, {771, {30,
10}}, {772, {31, 9}},
{773, {32, 8}}, {774, {33, 7}}, {775, {34, 6}}, {776, {35,
5}}, {777, {36, 4}},
{778, {37, 3}}, {779, {38, 2}}, {780, {39, 1}}, {781, {1,
40}}, {782, {2, 39}},
{783, {3, 38}}, {784, {4, 37}}, {785, {5, 36}}, {786, {6,
35}}, {787, {7, 34}},
{788, {8, 33}}, {789, {9, 32}}, {790, {10, 31}}, {791, {11,
30}}, {792, {12, 29}},
{793, {13, 28}}, {794, {14, 27}}, {795, {15, 26}}, {796, {16,
25}}, {797, {17, 24}},
{798, {18, 23}}, {799, {19, 22}}, {800, {20, 21}}, {801, {21,
20}}, {802, {22, 19}},
{803, {23, 18}}, {804, {24, 17}}, {805, {25, 16}}, {806, {26,
15}}, {807, {27, 14}},
{808, {28, 13}}, {809, {29, 12}}, {810, {30, 11}}, {811, {31,
10}}, {812, {32, 9}},
{813, {33, 8}}, {814, {34, 7}}, {815, {35, 6}}, {816, {36,
5}}, {817, {37, 4}},
{818, {38, 3}}, {819, {39, 2}}, {820, {40, 1}}, {821, {1,
41}}, {822, {2, 40}},
{823, {3, 39}}, {824, {4, 38}}, {825, {5, 37}}, {826, {6,
36}}, {827, {7, 35}},
{828, {8, 34}}, {829, {9, 33}}, {830, {10, 32}}, {831, {11,
31}}, {832, {12, 30}},
{833, {13, 29}}, {834, {14, 28}}, {835, {15, 27}}, {836, {16,
26}}, {837, {17, 25}},
{838, {18, 24}}, {839, {19, 23}}, {840, {20, 22}}, {841, {21,
21}}, {842, {22, 20}},
{843, {23, 19}}, {844, {24, 18}}, {845, {25, 17}}, {846, {26,
16}}, {847, {27, 15}},
{848, {28, 14}}, {849, {29, 13}}, {850, {30, 12}}, {851, {31,
11}}, {852, {32, 10}},
{853, {33, 9}}, {854, {34, 8}}, {855, {35, 7}}, {856, {36,
6}}, {857, {37, 5}},
{858, {38, 4}}, {859, {39, 3}}, {860, {40, 2}}, {861, {41,
1}}, {862, {1, 42}},
{863, {2, 41}}, {864, {3, 40}}, {865, {4, 39}}, {866, {5,
38}}, {867, {6, 37}},
{868, {7, 36}}, {869, {8, 35}}, {870, {9, 34}}, {871, {10,
33}}, {872, {11, 32}},
{873, {12, 31}}, {874, {13, 30}}, {875, {14, 29}}, {876, {15,
28}}, {877, {16, 27}},
{878, {17, 26}}, {879, {18, 25}}, {880, {19, 24}}, {881, {20,
23}}, {882, {21, 22}},
{883, {22, 21}}, {884, {23, 20}}, {885, {24, 19}}, {886, {25,
18}}, {887, {26, 17}},
{888, {27, 16}}, {889, {28, 15}}, {890, {29, 14}}, {891, {30,
13}}, {892, {31, 12}},
{893, {32, 11}}, {894, {33, 10}}, {895, {34, 9}}, {896, {35,
8}}, {897, {36, 7}},
{898, {37, 6}}, {899, {38, 5}}, {900, {39, 4}}, {901, {40,
3}}, {902, {41, 2}},
{903, {42, 1}}, {904, {1, 43}}, {905, {2, 42}}, {906, {3,
41}}, {907, {4, 40}},
{908, {5, 39}}, {909, {6, 38}}, {910, {7, 37}}, {911, {8,
36}}, {912, {9, 35}},
{913, {10, 34}}, {914, {11, 33}}, {915, {12, 32}}, {916, {13,
31}}, {917, {14, 30}},
{918, {15, 29}}, {919, {16, 28}}, {920, {17, 27}}, {921, {18,
26}}, {922, {19, 25}},
{923, {20, 24}}, {924, {21, 23}}, {925, {22, 22}}, {926, {23,
21}}, {927, {24, 20}},
{928, {25, 19}}, {929, {26, 18}}, {930, {27, 17}}, {931, {28,
16}}, {932, {29, 15}},
{933, {30, 14}}, {934, {31, 13}}, {935, {32, 12}}, {936, {33,
11}}, {937, {34, 10}},
{938, {35, 9}}, {939, {36, 8}}, {940, {37, 7}}, {941, {38,
6}}, {942, {39, 5}},
{943, {40, 4}}, {944, {41, 3}}, {945, {42, 2}}, {946, {43,
1}}, {947, {1, 44}},
{948, {2, 43}}, {949, {3, 42}}, {950, {4, 41}}, {951, {5,
40}}, {952, {6, 39}},
{953, {7, 38}}, {954, {8, 37}}, {955, {9, 36}}, {956, {10,
35}}, {957, {11, 34}},
{958, {12, 33}}, {959, {13, 32}}, {960, {14, 31}}, {961, {15,
30}}, {962, {16, 29}},
{963, {17, 28}}, {964, {18, 27}}, {965, {19, 26}}, {966, {20,
25}}, {967, {21, 24}},
{968, {22, 23}}, {969, {23, 22}}, {970, {24, 21}}, {971, {25,
20}}, {972, {26, 19}},
{973, {27, 18}}, {974, {28, 17}}, {975, {29, 16}}, {976, {30,
15}}, {977, {31, 14}},
{978, {32, 13}}, {979, {33, 12}}, {980, {34, 11}}, {981, {35,
10}}, {982, {36, 9}},
{983, {37, 8}}, {984, {38, 7}}, {985, {39, 6}}, {986, {40,
5}}, {987, {41, 4}},
{988, {42, 3}}, {989, {43, 2}}, {990, {44, 1}}, {991, {1,
45}}, {992, {2, 44}},
{993, {3, 43}}, {994, {4, 42}}, {995, {5, 41}}, {996, {6,
40}}, {997, {7, 39}},
{998, {8, 38}}, {999, {9, 37}}, {1000, {10, 36}}, {1001, {11,
35}}, {1002, {12, 34}},
{1003, {13, 33}}, {1004, {14, 32}}, {1005, {15, 31}}, {1006, {16,
30}},
{1007, {17, 29}}, {1008, {18, 28}}, {1009, {19, 27}}, {1010, {20,
26}},
{1011, {21, 25}}, {1012, {22, 24}}, {1013, {23, 23}}, {1014, {24,
22}},
{1015, {25, 21}}, {1016, {26, 20}}, {1017, {27, 19}}, {1018, {28,
18}},
{1019, {29, 17}}, {1020, {30, 16}}, {1021, {31, 15}}, {1022, {32,
14}},
{1023, {33, 13}}, {1024, {34, 12}}
So the first rational is 1/1, the second is 1/2, the third is 2/2, etc.
In this way you can count off every single rational number, eg for any rational number you can assign to it an integer. The method I'm using has the problem that the integer isn't unique (because 1/1=2/2), but this can be fixed by removing duplicates.